

Nearly-neutral dynamics: when is selection not selective?

Daniel Lawson

Bioinformatics and Statistics Scotland Macaulay Institute, Aberdeen

work with: Henrik Jeldtoft Jensen Imperial College London

Question: is evolution really stochastic?

- Focus on Bacteria
- Large population sizes (>10¹⁰)
- Weak selection acts on <u>whole</u> genome
 - Stability of protein folding (Aita, Ota and Usimi, 2003, JTB 221:599-613)
 - Gene regulation (Ohta, 2002, PNAS 99:5916134-16137)
 - Non coding DNA! (Ohta, 1997, Gene 205:261-267)
 - Genome length, reading fidelity, etc...
- How small should selection be for this not to matter?

Standard approach

- Consider allele A and mutant type a
 - Fitness of A is 1. Fitness of a is 1-s
 - Population size N
 - Initial population of a is 1
- Gamblers ruin:
 - Probability of winning relative to neutral case $p(s)/p(0) = 1 - Ns + O([Ns]^2)$
- Therefore s* ~ 1/N

Standard approach

- Selection O(10⁻¹⁰) is important!
- Theory: Bacteria shouldn't evolve neutrally
- Genetics data: neutral evolution occurs
 - Neutral at some loci
 - Neutral phylogenetic tree
- Also: genetic inference relies on this!
- Theory or data interpretation is wrong
 - Inappropriate to apply theory?
 - Stochastic interpretation of evolution?
- Bacteria perhaps are more selected?
 - ~50% of genes are selected in bacteria (Charlesworth and Eyre-Walker, 2006, Mol. Biol. Evol. 23:1348-1356)
 - 0-30% in apes

Are bacteria special?

Form colonies: lower effective population

High mutation rates: high diversity

• (mostly) clonal: gene interactions important

Fitness and reproduction

- "Fitness" concept
 - Doesn't exist!
- Fitness assigned to genes?
 - Only when recombination is high
- Fitness assigned to whole types?
 - Better when recombination is low
- Difference between asexual and sexual reproduction

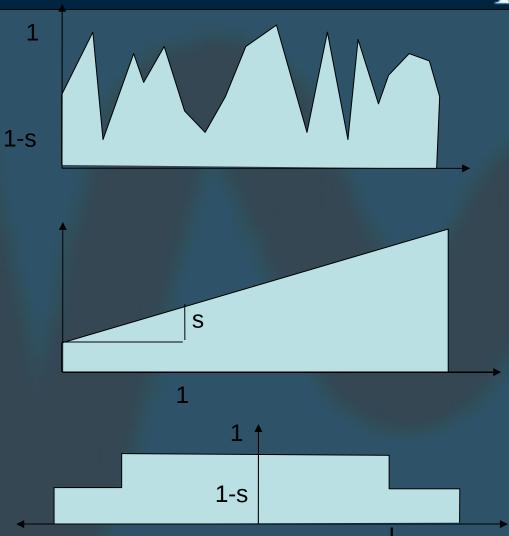
High mutation rates

- Create a distribution of many types
- Types don't have to be very good to mutate again
- Gene interactions:
 - Impact of mutation depends on genotype
 - Multiple bad mutations can produce fit type
- How does this distribution effect evolution?

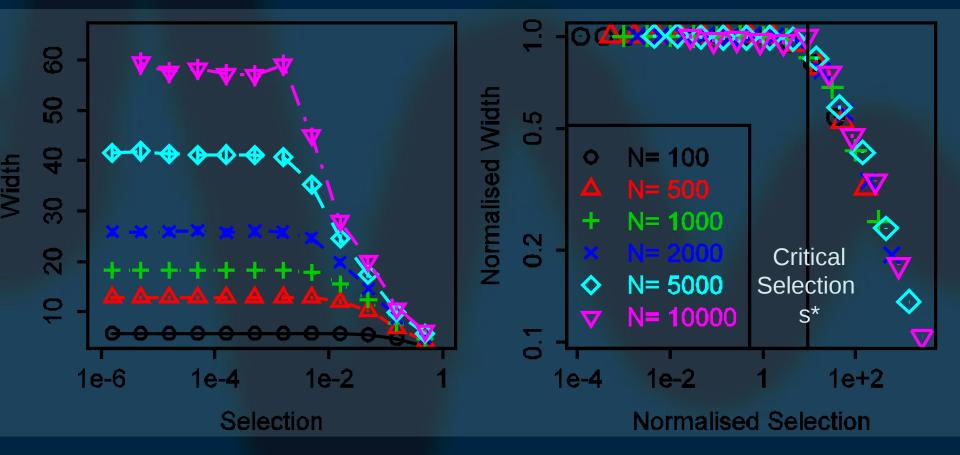
Evolution model

- N individuals reproduce clonally in a type space
 - Chosen randomly for death
 - Chosen proportionally to fitness for reproduction
 - Mutation: change at a single locus

Mutation: maximum change in fitness = s

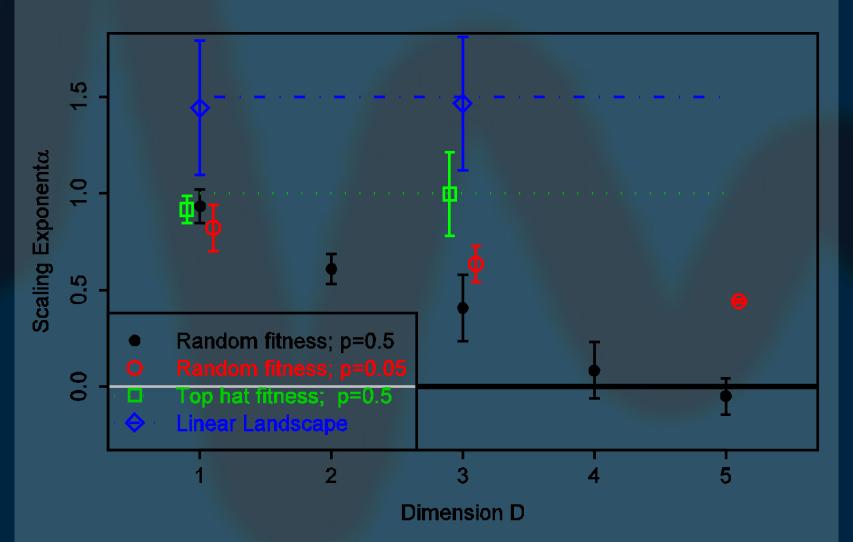

Fitness Landscapes

Random


Linear

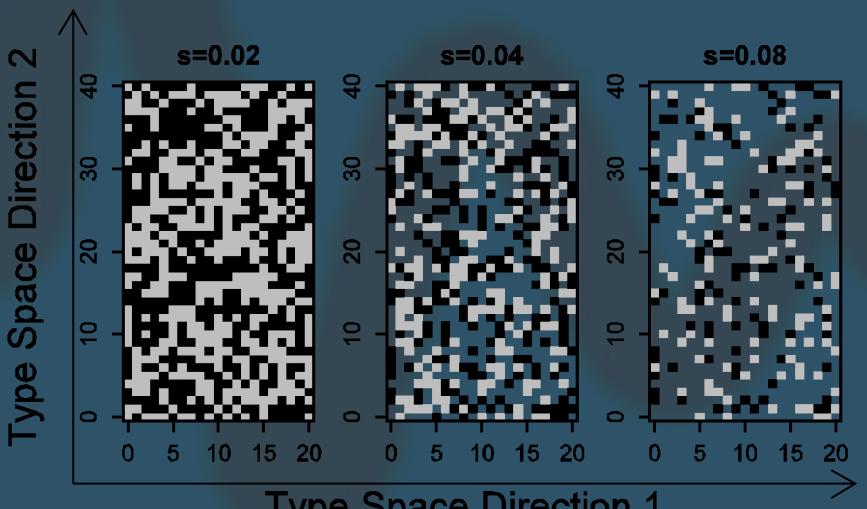
• Top hat

Results



Width: standard deviation of genetic distribution

Results



Summary of Results

- Neutral region size:
 - Linear landscape: large region ($\alpha = 1.5$)
 - Top hat: as low mutation case ($\alpha = 1$)
 - Random fitness:
 - $\alpha \rightarrow 1$ as $p_{mutation} \rightarrow 0$ or dimension D $\rightarrow 0$
 - $\alpha \rightarrow 0$ as dimension D $\rightarrow \infty$
 - When α = 0 an infinitely large population can still be neutral!

Why neutral evolution?

oSS

Ri

N=100, s*=0.01

Type Space Direction 1

Real evolution

- Selection "weaker" in large populations if:
 - Gene interaction is strong
 - Mutation rates per generation high
- Can form "Neutral Network"
 - Not all mutations are neutral
 - But population overcomes bad mutations by chance
- MAY apply to sexual population if gene interactions strong enough (NK landscape)

Caveats

- "Fitness Landscapes" don't really exist
- Model not explicitly for DNA
- Only mutations with weak effect count as "dimensions"

Conclusion

- Combination of
 - High mutation rates
 - Gene interactions important over evolutionary time
 - Large space of possible mutations
- Allows statistically neutral evolution even when selection is present
- Occurring on neutral networks
- This happens all the time!

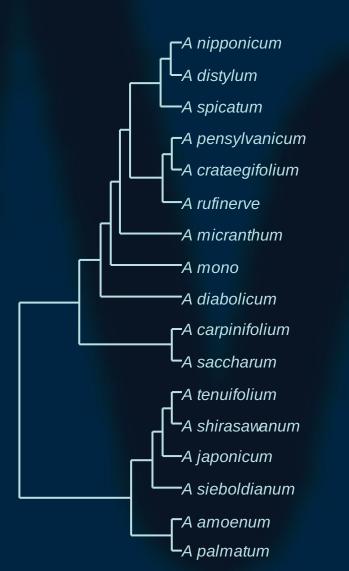
Implications

- Recombining/non-recombining regions and phenotypes/genotypes evolve differently
- Stochastic evolution in large populations is reasonable
 - Current genetic inference techniques supported!
- Selection at single mutation DOES NOT imply selection in population!

Further reading

This work:

"The role of weak selection and high mutation rates in nearly neutral evolution"


Daniel John Lawson and Henrik Jeldtoft Jensen

(to appear)

<u>Cited Literature:</u> Charlesworth and Eyre-Walker, 2006, Mol. Biol. Evol. 23:1348-1356 Aita, Ota and Uusimi, 2003, JTB 221:599-613) Ohta, 2002, PNAS 99:5916134-16137 Ohta, 1997, Gene 205:261-267

Nearly neutral tree

